ProjE: Embedding Projection for Knowledge Graph Completion

Baoxu Shi and Tim Weninger
Proc. of Association for the Advancement of Artificial Intelligence (AAAI), San Francisco, CA. 2017
Publication Date: 
September, 2017

With the large volume of new information created every day, determining the validity of information in a knowledge graph and filling in its missing parts are crucial tasks for many researchers and practitioners. To address this challenge, a number of knowledge graph completion methods have been developed using low-dimensional graph embeddings. Although researchers continue to improve these models using an increasingly complex feature space, we show that simple changes in the architecture of the underlying model can outperform state-of-the-art models without the need for complex feature engineering. In this work, we present a shared variable neural network model called ProjE that fills-in missing information in a knowledge graph by learning joint embeddings of the knowledge graph's entities and edges, and through subtle, but important, changes to the standard loss function. In doing so, ProjE has a parameter size that is smaller than 11 out of 15 existing methods while performing $37\%$ better than the current-best method on standard datasets. We also show, via a new fact checking task, that ProjE is capable of accurately determining the veracity of many declarative statements.